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Abstract Non-stationarity potentially comes from many
sources and they impact the analysis of a wide range of sys-
tems in various fields. There is a large set of statistical tests for
checking specific departures from stationarity. This study uses
Monte Carlo simulations over artificially generated time series
data to assess the effectiveness of 16 statistical tests to detect
the real state of a wide variety of time series (i.e., stationary or
non-stationary) and to identify their source of non-stationarity,
if applicable. Our results show that these tests have a low sta-
tistical power outside their scope of operation. Our results also
corroborate with previous studies showing that there are effec-
tive individual statistical tests to detect stationary time series,
but no effective individual tests for detecting non-stationary
time series. For example, Dickey-Fuller (DF) family tests are
effective in detecting stationary time series or non-stationarity
time series with positive unit root, but fail to detect negative
unit root as well as trend and break in the mean, variance, and
autocorrelation. Stationarity and change point detection tests
usually misclassify stationary time series as non-stationary.
The Breusch-Pagan BG serial correlation test, the ARCH ho-
moscedasticity test, and the structural change SC tests can help
to identify the source of non-stationarity to some extent. This
outcome reinforces the current practice of running several tests
to determine the real state of a time series, thus highlighting the
importance of the selection of complementary statistical tests
to correctly identifying the source of non-stationarity.

Keywords Stationarity Tests, Non-Stationarity, Time Series
Analysis, Simulation

1 Introduction

Time series analysis contributes to the explanation, predic-
tion and control over a wide range of systems in various fields.
Many time series models assume that the data have been gen-
erated by a stationary stochastic process. But, if the data are
not stationary, the uncertainty of the estimates of the model’s
parameters increases leading to inaccurate predictions.

A common source of non-stationarity is the unit root [1].
Unit root, however, is not the only source of non-stationarity
and it is possible for time series to be non-stationary, yet not
have a unit root. Figure 1 illustrates several examples of time
series that violate the stationarity properties in terms of trend
and break in mean, variance and autocorrelation, yet they have
no unit root.

Several statistical tests were specifically developed to check
for stationarity [2, 3, 4, 5, 6, 7]. Additional specialized statis-
tical tests were proposed aiming to detect particular types of
non-stationarity, such as unit roots, trends, structural breaks, or
other time dependent patterns [8, 9, 10].

Non-stationarity comes from various sources, yet statistical
tests are designed to detect specific sources of non-stationarity.
To overcome this limitation, time series practitioners usually
check a time series against multiple statistical tests and deem
a time series stationary only if it passes all or a subset of these
tests. This practice renders the selection of the tests relevant
for the correct detection of stationarity and the source of non-
stationarity for the proper selection and application of time se-
ries models.

Despite having a high statistical power to check for station-
arity or detect specific sources of non-stationarity, the existing
statistical tests show low statistical power for detecting all other
sources of non-stationarity (see [11, 12, 13]). Besides, dif-
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Figure 1. Types of non-stationarity time series.

ferent tests check different sources of non-stationarity, which
renders problematic the comparison of their results. But even
tests that check the same sources of non-stationarity (e.g., unit
root) often produce different results [14], which confuses prac-
titioners. These possible contradictory outcomes increase the
importance of correctly choosing the statistical tests to check
for stationarity. Such selection should be based both on the full
understanding of the tests’ assumptions and on the tests abil-
ities to correctly detect the real state of the time series (i.e.,
stationary or non-stationary).

This study (1) summarizes the most common statistical
tests applied to check for time series stationarity and non-
stationarity and (2) assesses the ability of these tests to detect
the real state of time series and to identify the source of non-
stationarity, if applicable.

While the power of statistical tests has been previously as-
sessed [14, 15, 16, 17, 18, 19, 13, 20], to the best of our knowl-
edge, this is the first time that such large set of statistical tests
was assessed for various sources of non-stationarity, such as
unit roots, and trend and break in mean, variance and autocor-
relation.

The paper unfolds as follows. Section 2 briefly describes
the various individual statistical tests used in detecting the real
state of a time series. The simulation study and the time series
data generating model are described in Section 3. Section 4
reports on the results of the individual statistical tests in terms
of their detection effectiveness. Section 5 discusses the overall
set of results and concluding remarks are provided in Section 6.

2 Tests for Stationarity and Non-
Stationarity

A stochastic process Xt, t ∈ Z is said to be stationary, or
second-order stationary, if the first two moments (i.e., the mean

and the covariance) are time-invariant [21]. This does not mean
that the observed properties of the time series (i.e., mean, vari-
ance and autocorrelation structure) do not change over time,
but the way they change do not change over time.

Next, we describe a range of individual statistical tests
specifically developed or used to check for stationarity or dif-
ferent sources of non-stationarity.

2.1 Unit Root Tests

The most known unit root tests are those from the Dickey-
Fuller (DF) family. These tests assess the null hypothesis that
the time series contains a unit root (i.e., non-stationary time
series) against the alternative hypothesis that it does not con-
tain a unit root (i.e., stationary time series) [22]. The original
Dickey-Fuller (DF) test [23, 24] assesses a time series variable
characterized by an AR(1) process for

• a unit root,

• a unit root with drift, and

• a unit root with drift and deterministic trend.

In the same family, the Augmented Dickey-Fuller (ADF) test
was designed for time series characterized by ARIMA(p, 1, q)
processes with unknown orders p and q [25].

Both the DF and ADF tests were designed for autoregres-
sive processes with finite-variance disturbances [26]. For an
unspecified autocorrelation and heteroscedasticity in the distur-
bance process, the Phillips-Perron (PP) test was proposed [27].
The PP test improves on the previous tests because it does not
require the specification of the lag length since it addresses
the higher order of autocorrelation by making a non-parametric
correction to the t-test statistic.

Using different parametrization requirements than the DF
family tests, Schmidt and Philips [28] developed the Schmidt-
Philips (SP) test with higher power to detect unity roots in the
presence of a deterministic trend.

The Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test was
designed to assess whether a time series is stationary around
a deterministic trend [29]. But contrary to the other unit root
tests, the KPSS test has trend stationarity as the null hypoth-
esis and unit root as the alternative hypothesis. Some studies
propose using the KPSS test in addition to the unit root tests of
the DF family since the former is less affected by the sample
size. However, the results of the KPSS test with a unit root test
of the DF family in tandem are difficult to interpret.

ADF, PP and KPSS tests have low power against highly
persistent stationary processes (i.e., autoregressive processes
where ϕ is close to 1) [30, 17, 31]. The Elliot-Rothenberg-
Stock (ERS) test overcomes this drawback by de-trending (de-
meaning) the time series using a generalized least-squares re-
gression to estimate the deterministic component over which it
performs a usual ADF test [12].

2.2 Stationarity Tests

Stationarity tests determine whether or not a time series is
stationary by testing if its spectral density is constant in time.
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One of the first tests for stationarity was the Priestley-Subba
Rao (PSR) test [6]. The PSR test analyzes the logarithm vari-
ance of the spectral density function to determine if the spec-
trum varies in time. The null hypothesis defines that the spec-
trum varies in time (i.e., non-stationary) and the alternative hy-
pothesis defines the contrary (i.e., stationary). Using a differ-
ent approach, von Sachs and Neumann [7] developed a test
that examines the Haar wavelet coefficients in time over a set
of smoothed frequencies to assess the constancy of the time
varying spectrum. Nason [5] also used Haar wavelet to de-
velop a method using the wavelets over a finite set of scales al-
lowing to test for stationarity hypothesis of both Gaussian and
non-Gaussian time series. Nason’s test has the advantage of
identifying the location and time scale where non-stationarity
is present.

2.3 Serial Correlation Tests

Serial correlation tests check the presence of autocorrelation
in a time series [32]. A common serial correlation test used for
this purpose is the Durbin-Watson (DW) test [33]. Although
commonly used for checking non-stationarity, this test is not
suitable for lagged dependent variables and cannot account for
higher orders of serial correlation. The Breusch-Godfrey (BG)
test account for higher orders of serial correlation by testing the
error terms of a fitted regression model [34, 35]. Similarly, the
Ljung-Box (LB) test checks whether any of a group of autocor-
relations of the residual time series are different than zero [36].

2.4 Homoscedasticity Tests

Homoscedasticity tests check the homogeneity of the vari-
ance of a time series process variable. Two homoscedasticity
tests used to check for non-stationarity are Breusch-Pagan (BP)
test [37] and ARCH test [38]. The BP test checks if the vari-
ance of errors from the model fit are dependent on the values
of the independent variables. While the ARCH test checks if a
time series exhibits conditional heteroscedasticity or autocor-
relation in the squared residuals.

2.5 Structural Change Tests

Structural change tests identify unexpected shifts in the
mean, variance or autocorrelation of a time series, which are
a clear indication of non-stationarity. Ross [39] implemented
several two-sample mean and variance change point tests (i.e.,
CPM and CPV tests) for a wide variety of unknown distri-
butions (e.g., CPM-STUDENT and CPV-BARTLETT tests).
Such tests require the modeling of any underlying autocorrela-
tion in the data followed by the change detection over the resid-
uals of the model. Killick and Eckley [40] implemented single
point detection tests using the maximum log likelihood ratio
(AMOC), and multiple change point detection tests using the
pruned exact linear time (PELT) method and cumulative sum
of residuals (CUSUM). These methods can test for both struc-
tural changes in mean (i.e., CPTM-AMOC, CPTM-PELT and
CPTM-CUMSUM tests) and in variance (i.e., CPTV-AMOC,
CPTV-PELT and CPTV-CUMSUM tests).

Using a different approach, Killick et al. [41] also imple-
mented tests for structural changes (i.e., SC) in regression.
These tests first generate a linear model of the data and then
tests if the coefficient vector varies in time. Three methods are
proposed to conduct this hypothesis testing: cumulative sum
of residuals (CUSUM), moving sum of residuals (MOSUM)
and moving estimates (ME) tests, with both ordinary least
squares (SC-OLS-CUSUM, SC-OLS-MOSUM, SC-OLS-ME)
and recursive residuals (SC-RR-CUSUM, SC-RR-MOSUM,
SC-RR-ME) [42, 43]. The SC-OLS-MOSUM method evalu-
ates a fixed sum of residuals and the SC-OLS-ME method esti-
mates the regression coefficients based on a moving bandwidth
or data window of size proportional to the entire time series
sample size [43, 44]. Despite the effectiveness of the SC tests
in detecting structural changes, these tests cannot identify the
actual source of change present in the time series.

3 Simulation Study
In this section we describe the simulation experiment per-

formed to assess the effectiveness of various individual statisti-
cal tests in correctly detecting the real state of time series (i.e.,
stationary or non-stationary).

The study used artificial time series data to perform the as-
sessment. The artificial time series data were generated using
the following data generating model

yt = δ +
τt

T
+

p∑
t>1,i=1

ϕt,iyt−i + ϵt +

q∑
t>1,j=1

θt,jϵt−j , (1)

ϵt = N
(
µ, σ +

ωt

T

)
, (2)

where yt is the dependent variable, t = 1, 2, . . . , T is the time,
δ is the mean constant, τ is the trend in mean constant over
time, ϕ is the autoregressive parameter, p is the order of au-
toregressive, θ is the moving average parameter, q is the order
of the moving average and ϵt is the normal error with mean µ,
variance σ and constant trend in variance over time ω.

Table 1 lists the individual statistical tests with their respec-
tive R functions and packages used in this study.

We assessed the effectiveness of these individual statistical
tests for stationary AR(1) time series without drift and seven
other types of AR(1) time series with different sources of non-
stationarity:

1. unit root (Unit Root),

2. trend in mean (Trend Mean),

3. trend in variance (Trend Variance),

4. trend in autocorrelation (Trend AC),

5. structural break in mean (Break Mean),

6. structural break in variance (Break Variance) and

7. structural break in autocorrelation (Break AC).
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Table 1. Individual statistical tests assessed and their function in R programming language [45]. x denotes the simulated data, xlag is lag 1, res are the residuals
of AR(1) model and reslag is lag 1 of residuals of AR(1) model.

Test name R function R package

Dickey-Fuller (DF) adf.test(x, k=0) tseries

Augmented Dickey-Fuller (ADF) adf.test(x) tseries

Phillips-Peron (PP) pp.test(x) tseries

Schmidt-Phillips (SP) ur.sp(x) urca

Elliot-Rothenberg-Stock (ERS) ur.ers(x) urca

Kwiatkowski-Phillips-Schmidt-Shin (KPSS) kpss.test(x) tseries

Priestley-Subba Rao (PSR) stationarity(x) fractal

Wavelet (WAVELET) hwtos2(x) locits

Bootstrap (BOOTSTRAP) BootTOS(x) costat

Breusch-Godfrey (BG) bgtest(x ∼ 1 + xlag) lmtest

Ljung-Box (LB) Box.test(res, lag=1) stats

ARCH Lagrange Multiplier (ARCH) ArchTest(res, lags=1) FinTS

Breusch-Pagan (BP) bptest(res ∼ reslag) lmtest

Detect Change Point (CPM-STUDENT, CPV-BARTLETT) detectChangePoint(res) cpm

Change Point Mean (CPTM-[AMOC, PELT, CUMSUM]) cpt.mean(x) changepoint

Change Point Variance (CPTV-[AMOC, PELT, CUMSUM]) cpt.var(x) changepoint

Structural Change (SC-[OLS, RR]-[CUSUM, MOSUM, ME]) efp(x ∼ xlag) strucchange

We used the data generating model in Eq. (1) to
generate these AR(1) time series for sample sizes
T = 32, 64, 128, 256, 512, 1024, 2048, 4096 and ϕ =
0.99, 0.9, 0.8, 0.5, 0.2, 0,−0.2,−0.5,−0.8,−0.9,−0.99, 1,−1.
Parameter values specific to generating the stationary and each
type of non-stationary time series are shown in Table 2; if
not specified, the values used for these parameters are τ = 0,
ω = 0, δ = 0, θ = 0, µ = 0, σ = 1, p = 1 and q = 0.

The Trend Mean and Trend Variance used a constant value
of ϕt (i.e., ϕt = ϕ) to generate the time series, while the Trend
AC varies ϕt value in time, thus ϕt = ϕ1 + ((ϕ1 − ϕ2) ×
t)/T ). The structural break time series were generated using
the constant values τ1, ω1 and ϕ1 for the first half of the time
series generation process and the constant values τ2, ω2 and ϕ2

for the second half.
We ran 1,000 replications of each combination of ϕ and sam-

ple size with the parameter values listed in Table 2. For each
generated time series, we applied the individual statistical tests
shown in Table 1 assuming significance level of 0.05. Partic-
ularly for the SC tests using the SC-OLS-MOSUM and SC-
OLS-ME methods, we also ran the tests for bandwidths from
10% to 90% in steps of 10%.

Depending on the individual test, the stationarity hypothesis
is either the null hypothesis (i.e., KPSS, stationarity, serial cor-
relation, homoscedasticity and structural change tests) or the
alternative hypothesis (i.e., DF family unit root tests). Thus,
instead of recording the outcome of the tests in terms of their
hypothesis, the results were recorded in a binary format where
0 means the time series was identified as non-stationary and
1 as stationary. The results were summarized as the propor-
tion of times out of 1,000 replications that the time series was
identified as stationary independent of the time series real state.
Summary values close to 1 indicate the test identified the time
series mostly as stationary, while values close to 0 indicate the
time series was mostly identified as non-stationary.

We used these values to calculate the detection effectiveness
of each statistical test. Detection effectiveness refers to the cor-
rect detection of the actual time series state (i.e., stationary or
non-stationary).

4 Results

In this section, we present a summary of the results of the
simulation study conducted in Section 3. For the detailed re-
sults, we refer the reader to the Supporting Information (SI)
material1.

Although the results are discussed in terms of the detection
effectiveness of the statistical tests, the plots show the percent-
age of times that the statistical test identified the time series
as stationarity (i.e., % Detected Stationarity) irrespective of the
real state of the times series. We opted for using this metric
to standardize the presentation of the results since the assessed
statistical tests adopt different null hypotheses, which renders
confusing the comparison and discussion in terms of their em-
pirical size and power. Thus, if the time series assessed is sta-
tionary (e.g., Figure 2 Panels A-D), an effective test should
have the % Detected Stationarity value close to 100%. But,
if the time series is non-stationary (e.g., Figure 2 Panels E-F),
an effective test should have the % Detected Stationarity value
close to 0%.

4.1 Stationary Time Series

Figure 2 Panels A-D shows the results for different station-
ary time series. Overall, the performance of the unit root tests
and PSR test improved with the increase of sample size, while

1The Support Information material is available at https://tinyurl.

com/2p89spky



674 Simulation-Based Assessment of the Effectiveness of Tests for Stationarity

Figure 2. Detection effectiveness of the Unit Root and Stationarity tests for stationary and unit root time series.
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Table 2. Parameter values used to generate the stationary and non-stationary time series.

Type Parameter Values

Stationary ϕ = {0.99, 0.9, 0.8, 0.5, 0.2, 0,−0.2,−0.5,−0.8,−0.9,−0.99}
Unit Root ϕ = {1,−1}
Trend Mean τ = {0, 0.5, 1, 2, 3, 4}
Trend Variance ω = {0, 0.5, 1, 2, 3, 4}
Trend AC (ϕ1, ϕ2) = {(0.9,−0.9), (0.45,−0.45)}
Break Mean (τ1, τ2) = {(0, 0), (0, 0.5), (0, 1), (0, 2), (0, 3), (0, 4)}
Break Variance (ω1, ω2) = {(0, 0), (0, 0.5), (0, 1), (0, 2), (0, 3), (0, 4)}
Break AC (ϕ1, ϕ2) = {(0.9, 0.45), (0.9, 0), (0.9,−0.45), (0.9,−0.9), (0.45, 0),

(0.45,−0.45), (0.45,−0.9), (0,−0.45), (0,−0.9), (−0.45,−0.9)}

the performance of the WAVELET and BOOTSTRAP tests de-
creased with the increase of sample size.

The stationarity and unit root tests showed a high detec-
tion effectiveness. The performance of the unit root tests of
the DF family (i.e., DF and ADF tests) improved with the in-
crease of the sample size, while the KPSS test performance
remained about the same regardless of the sample size for
small values of ϕ. Although impervious to the sample size,
the KPSS test had very low detection effectiveness for highly
persistent autoregressive time series (see SI Table 1 Station-
arity). The WAVELET and BOOTSTRAP tests outperformed
the unit root tests for small sample sizes. The performance
of the WAVELET test declined as the sample size increased
above 512 observations. The BOOTSTRAP test had low detec-
tion power for highly persistent negative autoregressive values
(ϕ ≤ −0.9), while unit root tests had lower detection power for
highly persistent positive autoregressive values (ϕ ≥ 0.9) (see
SI Table 1 Stationarity).

4.2 Non-Stationary Time Series: Unit Root

Figure 2 Panels E-F shows the results of non-stationarity unit
root time series when ϕ = 1. All unit root tests correctly de-
tected the true state of the time series for ϕ = 1, but they failed
for ϕ = −1 (see SI Table 2 Unit Root). The performance of
the tests of the DF family and the KPSS test improved with the
increase of the sample size, with the former outperforming the
latter. The BOOTSTRAP and WAVELET tests detected incor-
rectly times series with ϕ = 1 as stationary, but detected cor-
rectly time series with ϕ = −1 as non-stationary for samples
larger than 256 observations (see SI Table 2 Unit Root). The
PSR test had a low detection effectiveness of unit root time se-
ries at small sample sizes, which also decreased as the sample
size increased.

4.3 Non-Stationary Time Series: Trend and Break in
Mean

Figure 3 shows selected results of non-stationarity time se-
ries with trends and breaks in the mean.

The BOOTSTRAP performed the best among the station-
arity tests in detecting trends and breaks in the mean. The

WAVELET test exhibited improved detection effectiveness as
the sample size increased, but this might have been due to the
sample size rather than the actual capacity of detecting trends
in the mean. For time series with ϕ = 0 and mean trends, all
tests performed poorly for sample sizes smaller than 1,500, ex-
cept for the CPM-STUDENT test that was able to detect the
mean trends correctly for samples greater than 1,000. As the ϕ
value changed (Figure 3 Panels C and E), the CPM-STUDENT
test performance remained largely the same, but the SC and
CPTM tests started to perform better. In general, no test de-
tected the trend in the mean for very small samples. The SC
tests had high detection effectiveness only for small samples
and for larger samples. The CPM-STUDENT test had prob-
lems detecting breaks in the mean for negative ϕ autoregressive
time series (see SI Table 3 Trend in Mean) because of the nature
of the test (i.e., a two-sample t-test over sequentially increasing
sample sizes) and its inability to distinguish between the high
within-variability of highly persistent series from the between-
samples variability (results not shown). Similar trends were
present in the detection of trend and break in the mean, al-
though, in general, break in the mean required smaller sample
sizes than the trend in the mean to be detected (see SI Table 3
Trend in Mean and Table 4 Break in Mean).

4.4 Non-Stationary Time Series: Trend and Break in
Variance

Figure 4 shows selected results of non-stationarity time se-
ries with trend and break in the variance.

The CPTV structural change tests increased their detection
effectiveness with the increase of the sample size or the in-
crease of the trend or break magnitudes. They also had, in
general, the best detection effectiveness of trend and break in
the variance for small sample sizes. The CPV-BARTLETT test
performance was similar to the CPTV-PELT and the perfor-
mance of the ARCH test for trend in the variance with sample
sizes larger than 2048 and magnitude larger than three stan-
dard deviations, and for break in the variance with sample sizes
larger than 1024 and magnitude larger than one standard devi-
ation (see SI Table 5 Trend in Variance and Table 6 Break in
Variance). The SC-OLS-ME tests and BOOTSRAP tests failed
to detect most of the trend or break in the variance. Similar
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Figure 3. Detection effectiveness of statistical tests for non-stationarity time series with trend and break in the mean.
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Figure 4. Detection effectiveness of statistical tests for non-stationary time series with trend and break in the variance.
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patterns were present in the detection of trend and break in the
variance, although, in general, break in the variance required
smaller sample sizes than trend in the variance (see SI Table 5
Trend in Variance and Table 6 Break in Variance).

4.5 Non-Stationary Time Series: Trend and Break in
Autocorrelation

Figure 5 shows selected results of non-stationarity time se-
ries with trend and break in the autocorrelation.

The BG test detection effectiveness increased with the in-
crease of the sample size. The SC-OLS-ME structural change
tests with small search windows had the highest detection ef-
fectiveness for smaller sample sizes. The LB and BOOTSRAP
tests failed to detect most of the trend or break in the autocor-
relation (see SI Table 7 Trend in AC and Table 8 Break in AC).

5 Discussion
Non-stationarity comes from potentially many sources.

There is a wide variety of statistical tests designed for detect-
ing specific sources of non-stationarity. Our simulation results
show that these tests perform well in detecting the source of
non-stationarity they have been designed for, especially for
larger sample sizes. For example, DF family tests detect unit
roots, and mean changes tests detect mean breaks and trends.
But these tests show in our results low detection effectiveness
outside their scope of operation. For example, unit root tests
were not able to detect any other source of non-stationarity
beside unit roots (for detailed results, we refer the reader to
the Supporting Information (SI) material). Additionally, tests
designed to detect the same type of non-stationarity may dis-
agree. For example, Afriyie et al. [14] explored extensively the
performance of unit root tests and they recommend the use of
KPSS test when unit root tests disagree. Afriyie et al. [14],
however, did not explore the case of other sources of non-
stationarity. Our results corroborate their conclusions and ex-
tended them by comparing a larger variety of statistical tests
and non-stationarity time series.

More general tests such as Stationarity tests and Structural
Change (SC) tests are theoretically appealing since they claim
to be able to detect whether a time series is stationary or not
regardless of the source of non-stationarity. However, our re-
sults indicated that their performance are not consistent for all
sources of non-stationarity. For example, the stationarity tests
PSR, BOOTSTRAP and WAVELET were able to correctly de-
tect stationary time series for small sample sizes, but they failed
to detect positive unit roots, and trends and breaks in the vari-
ance and autocorrelation. Additionally, the SC tests failed to
detect most trends and breaks in the variance.

Overall, the results indicate that the statistical tests have
higher detection effectiveness for larger sample sizes and larger
trend or break changes in the mean, variance or autocorrelation
regardless of the source of non-stationarity.

Since there is no single designed test capable of detecting
all sources of non-stationarity, time series practitioners must
employ several tests to reach a conclusion about the state of a

time series. The selection of these tests, however, must not be
done solely on the basis of the tests assumptions (i.e., unit root
tests used for unit root time series), but also based on the time
series characteristics for which these statistical tests provide
erroneous or questionable results. For example, we observed
that the tests of the DF family performed well in detecting sta-
tionary time series and non-stationary unit root time series, but
how do they perform in case of non-stationary time series with
other sources of non-stationarity?

Figure 6 summarizes in a heatmap the percentage of times
that time series were detected as stationary for all tests against
stationary and all sources of non-stationarity (unit roots, and
trend and break in the mean, variance and autocorrelation). For
example, the DF test (first row) identified the ARMA (ϕ =
0.99) time series (column 1) as stationary between 50% – 75%
of the time, identified ARMA (ϕ = 1) time series (column 4)
as stationary between 0% – 25% of the time, and identified
ARMA (ϕ = 0, trend in the mean = 1), a non-stationary time
series with trend in the mean (column 6), as stationary between
75% –100% of the time.

Figure 6 still shows that the tests of the DF family perform
very well in the case of stationary series and positive unit root
time series. But they are not able to detect any other source
of non-stationarity. This suggests that the actual interpretation
of the results generated by these tests should be that the time
series is either (1) non-stationary with positive unit root or (2)
stationary, or non-stationary with negative unit root, or non-
stationary with trend in the mean, variance, or autocorrelation.
Hence, if the time series has any source of non-stationarity dif-
ferent than unit root, the test cannot detect and wrongly assume
the time series is stationary.

On the other extreme, tests as the CPM-STUDENT and the
CPV-BARLETT detect all the time series as either having a
trend or break in the mean or variance regardless of their source
of non-stationarity and their real state. The CPM-STUDENT
test is designed to detect differences in mean, while the CPV-
BARLETT test is designed to detect differences in variance.
When assessing these tests only against the trend and break in
the mean and variance (Figures 3 and 4), we might conclude
that they perform well. But when assessing them against time
series with other sources of non-stationarity, we saw that they
perform poorly and misclassify most time series. Thus, the use
of these tests in time series assessments are detrimental and
might lead to erroneous conclusions.

All tests suffer from misclassification problems. The ARCH
test, for example, performs well in detecting trend and break in
the variance, but it also detects trends and breaks in the auto-
correlation. If used alone, the actual binary result of the ARCH
test should be interpreted that the time series (a) is stationary,
or it is non-stationary with a unit root or trend or break in the
mean, or (b) has trend or break in the variance or autocorrela-
tion. Thus, based on the results of just an individual test, it is
challenging to identify the source of non-stationarity or even
accurately detect if the time series is non-stationary.

Another important problem is the misclassification of sta-
tionary time series as non-stationary. Such an example can be
observed in the results of the CPTV tests. These tests iden-
tify the trend and break in the variance as intended, although
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Figure 5. Detection effectiveness of statistical tests for non-stationary time series with trend and break in the autocorrelation.
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Figure 6. Heatmap of the percentage of time series detected as stationary for sample size 2048. Panel A shows stationary time series. Panel B shows non-
stationary time series. The bottom labels show a subset of time series assessed. The top labels indicate the type of the time series assessed. The right labels show
a subset of the tests assessed. The left labels indicate the type of the tests. The color represents the percentage of times out of 1,000 that the time series has been
detected as stationary: Black ≥ 90%, Dark-Gray ≥ 75% and < 90%, Light-Gray ≥ 50% and < 75%, and White < 50%.
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misclassified more severe trend and break in the autocorrela-
tion also as variance trends and breaks. Likewise, they classify
stationary time series as non-stationary with trend and break
in the variance. These misclassifications can really have very
negative consequences in time series modeling since they can
direct practitioners on the wrong analytical path or make them
draw the wrong conclusions.

Overall, our results suggest that it is not possible to defini-
tively determine the exact source of non-stationarity. More-
over, they also suggest that certain tests can actually lead to
even more erroneous conclusions.

Therefore, the use of multiple tests is the best approach, but
the statistical tests should be selected accordingly to comple-
ment each other’s results. For example, because the DF family
tests performance leads to the interpretation that time series is
either stationary or non-stationary with positive unit root, any
other test used in tandem should really focus in discerning if
the time series is in fact stationary, or if it has any other source
of non-stationarity like negative unit root, or trend or break in
the mean, variance or autocorrelation. The identification of
the source of non-stationarity from this perspective should be
viewed as a bonus, with the acknowledgment that there is no
individual test that is not misclassified. From this perspective,
the first criteria for selecting additional tests to be used beside
the tests of the DF family should be to pick those that do not
misclassify stationary time series as non-stationary. Based on
this criterion, the WAVELET, the CPM and CPV tests (e.g.,
CPM-STUDENT and CPV-BARLETT) are not appropriate to
be used in tandem with tests of the DF family. For the test
to meet this criterion, it will be useful to choose those that at
least help to identify the type of non-stationarity to some ex-
tent. For example, the BG test that identifies trend and break in
autocorrelation, the ARCH test that identifies trend and break
in variance, and the SC tests that identify the trend and break
in the mean and autocorrelation.

6 Conclusions

Non-stationarity potentially comes from many sources.
There is a wide variety of statistical tests for checking specific
departures from stationarity. Our study shows that these tests
have a low statistical power outside their scope of operation
by comparing a larger variety of statistical tests and sources of
non-stationarity. While tests capable of identifying if a time
series is stationary exist, the same cannot be said about tests
that can detect sources of non-stationarity. However, there are
several tests that can detect non-stationarity different from unit
root, but these tests are not always reliable for identifying the
actual source of non-stationarity.

It is a common strategy among the time series practitioners
to run several tests on a given time series and deem it station-
ary only if it passes all or a set of these tests (depending on
the decision rules established by the practitioner). Our results
also corroborate with this practice and are useful to inform the
strategies of time series practitioners.

Finally, statistical tests can be important support tools in
the decision-making process. Yet our results showed that they

should not be used exclusively in the decision-making process,
but rather as one information source in a more deliberative pro-
cess, together with other tools like a visual exploration of the
data, in addition to a profound understanding of the process
that generated the data.
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