Regulated MAS for Sociotechnical Systems

Luis Gustavo Nardin

MINES Saint-Étienne

2023 Workshop-School on Agents, Environments, and Applications

Outline

Introduction

Sociotechnical Systems (STS)

Normative Multiagent Systems (NMAS)

Use Case: SmartGrid Scenario

Enforcement Mechanism for STS

Use Case: SmartGrid Experiments

Use Case: Production Automation

Challenges

Informal Regulations

(e.g., conventions, gossip, ostracism)

Ancient Societies

- Small groups
- Close kinship
- Long term relationships

How can we regulate these cyber-physical social systems interfering the least with the autonomy of their entities?

- ► Human society is invariably becoming more **dependent on** technologies, in particular **information technology**, which is transforming how **human** and **autonomous artificial** agents interact
- Technologies enabling these interactions include technical systems but also operational processes and people who use and interact with these technical systems
- Sociotechnical systems (STS) are cyber-physical systems that incorporate social and technical aspects facilitating the interactions of multiple autonomous participants whose interests are at best imperfectly aligned (Sing, 2013)
 - Publishing system and manufacturing industry are STSs where technology is used in parallel with specific social and organizational strategies to control production

- Human society is invariably becoming more dependent on technologies, in particular information technology, which is transforming how human and autonomous artificial agents interact
- Technologies enabling these interactions include technical systems but also operational processes and people who use and interact with these technical systems
- Sociotechnical systems (STS) are cyber-physical systems that incorporate social and technical aspects facilitating the interactions of multiple autonomous participants whose interests are at best imperfectly aligned (Sing, 2013)
 - Publishing system and manufacturing industry are STSs where technology is used in parallel with specific social and organizational strategies to control production

- ► Human society is invariably becoming more **dependent on** technologies, in particular **information technology**, which is transforming how **human** and **autonomous artificial** agents interact
- Technologies enabling these interactions include technical systems but also operational processes and people who use and interact with these technical systems
- ➤ Sociotechnical systems (STS) are cyber-physical systems that incorporate social and technical aspects facilitating the interactions of multiple autonomous participants whose interests are at best imperfectly aligned (Sing, 2013)
 - Publishing system and manufacturing industry are STSs where technology is used in parallel with specific social and organizational strategies to control production

Figure : Sociotechnical system stack

Source: http://csis.pace.edu/~marchese/SE616_New/L10/L10_new.htm

Regulation of Sociotechnical Systems

- ► The success of STS relies on effective **governance**, which pertains to how the mentioned interactions are controlled (Balke & Villatoro, 2012)
- Governance maintains the equilibrium between the
 - Autonomy and flexibility of the participants whose interests are at best imperfectly aligned
 - Predictability desired in technological systems
- Normative Multiagent System has been proposed to govern these systems (Singh, 2013)

- ► Agents: autonomous decision-making entities able to react to events while pursuing (pro-actively defined or delegated) goals and directing actions to achieve them
- ► **Environment**: shared medium providing the surrounding conditions for agents to exist and act
- ▶ **Interaction**: motor of dynamics and interoperability in the MAS
- ► **Organization**: abstractions to declare and make accessible to agents their collective structure and functioning in a shared environment

- ➤ **Agents**: autonomous decision-making entities able to react to events while pursuing (pro-actively defined or delegated) goals and directing actions to achieve them
- ► **Environment**: shared medium providing the surrounding conditions for agents to exist and act
- ► **Interaction**: motor of dynamics and interoperability in the MAS
- Organization: abstractions to declare and make accessible to agents their collective structure and functioning in a shared environment

- ➤ **Agents**: autonomous decision-making entities able to react to events while pursuing (pro-actively defined or delegated) goals and directing actions to achieve them
- ► **Environment**: shared medium providing the surrounding conditions for agents to exist and act
- ▶ **Interaction**: motor of dynamics and interoperability in the MAS
- Organization: abstractions to declare and make accessible to agents their collective structure and functioning in a shared environment

- ➤ **Agents**: autonomous decision-making entities able to react to events while pursuing (pro-actively defined or delegated) goals and directing actions to achieve them
- Environment: shared medium providing the surrounding conditions for agents to exist and act
- ► **Interaction**: motor of dynamics and interoperability in the MAS
- Organization: abstractions to declare and make accessible to agents their collective structure and functioning in a shared environment

- ➤ **Agents**: autonomous decision-making entities able to react to events while pursuing (pro-actively defined or delegated) goals and directing actions to achieve them
- Environment: shared medium providing the surrounding conditions for agents to exist and act
- ► **Interaction**: motor of dynamics and interoperability in the MAS
- ➤ **Organization**: abstractions to declare and make accessible to agents their collective structure and functioning in a shared environment

Normative Multiagent Systems

A **Normative Multiagent System** (NMAS) is a multiagent system organized by means of **mechanisms** to represent, communicate, distribute, detect, create, modify, and enforce **norms**, and mechanisms to **deliberate about norms** and **detect norm violation and fulfillment**. (Boella et al., 2008)

Norms

Norms represent the *behavior that each party in a system expects from others* and may be willing to enforce (Hollander & Wu, 2011)

Norms do not guarantee that agents will comply with them

Norms

Norms represent the *behavior that each party in a system expects from others* and may be willing to enforce (Hollander & Wu, 2011)

Norms do not guarantee that agents will comply with them

Norm Enforcement Mechanisms

Enforcement mechanisms motivate norm compliance

- Regimentation
 - Agents are not allowed to violate norms
 - Require mechanisms to block violations
 - Examples: Prison, Message Filtering
- Regulation
 - Agents are allowed to violate norms
 - Require mechanisms to detect and react to violations
 - Examples: Parking fines, suspension to system access

(Grossi et al, 2007)

Norm Enforcement Mechanisms

Enforcement mechanisms motivate norm compliance

- Regimentation
 - Agents are not allowed to violate norms
 - Require mechanisms to block violations
 - Examples: Prison, Message Filtering
- Regulation
 - Agents are allowed to violate norms
 - Require mechanisms to detect and react to violations
 - Examples: Parking fines, suspension to system access

(Grossi et al, 2007)

Norm Enforcement Mechanisms

	Observer	Enforcer	Sanctions	
Regimentation	Infrastructure	Infrastructure (mental states)	Impossible	
		Infrastructure (agent actions)	violations	
Enforcement	Infrastructure entities	Infrastructural	Infrastructural	
	Third-party	entities	sanction	5
		Social enforcement	Vicarious, Retaliation, Reciprocation	
	Second-party	Second-party enforcement	Retaliation, Reciprocation	
		Infrastructural entities	Infrastructural sanction	
	First-party	First-party enforcement	Self-sanction	

Taxonomy
Infrastructural control (white box)
Infrastructural control (black box)
Institutionalization of agents
Infrastructural assisted enforcement
Informal Control
Promisee-enforced rules
Infrastructural assisted enforcement
Self-control

Figure : Norm enforcement taxonomy (Balke, 2009)

Sanctions

- ➤ **Sanctions** are negative or positive reactions to potentially any violation of or compliance with an expectation (i.e., a norm)
- Used to influence agents' decision-making and steer the system in the preferred direction

Norm

Sellers are obliged to supply the committed amount of energy to the buyer

Norm

Sellers are obliged to supply the committed amount of energy to the buyer

Requirements

The requirements for an effective enforcement model to be used for regulating sociotechnical systems are

- **R1** Multiple categories of sanctions
- **R2** Potential **association of multiple sanctions with a norm** violation or compliance
- R3 Reasoning about most adequate sanction(s) to apply based on several decision factors

EMILIA: Normative Agent Architecture

Source code available at https://github.com/gnardin/emilia

(Nardin et al., 2016a)

(Nardin et al., 2016a)

De Jure

- Stores all the norms and sanctions specifications
- Enable the linking between a norm and multiple sanctions
- Relations can be many to many

Norms

 N_1 (active, role(A) = Prosumer, State,

- Denounce violation to the Regulatory Agency
- Spread the negatively updated reputation score to other agent
- Ostracize the agent

- De Facto

- Stores data about sanctioning activities performed or observed
- Stores data about the efficacy of the applied sanctions in promoting compliance

Norm	Sanction	Target	Violations	Efficacy
N1	\$1	Χ	10	2
N1	\$2	Χ	5	4
N1	\$3	Χ	4	0

Detector

- Checks whether the content of an observed event is ruled or not by any norm stored in the De Jure
- If matches with norm specification, then the Evaluator and Controller processes are triggered

Event	Norm	
e(01012015, C, B, supply(195 kWh))	N_1 (active, role(A) = Prosumer, State,	

- Executor

- Receives the set of sanctions and executes them, if it has the power to execute
- Otherwise, it requests another agent to execute

Sanction	Event
S2	Send to all its neighbors the message
Spread the negatively updated	
reputation score to other agent	Agent X has a low reputation

Sanctioning Process Model

- Controller

 Monitors the outcomes of applied sanctions, and stores and reviews the De Facto repository with them

Agent X complied with the norm after had been sanctioned

Norm	Sanction	Target	Violations	Efficacy
N1	S1	Χ	10	2
N1	S2	X	6	5
N1	\$3	Χ	4	0

Sanctioning Process Model

Sanctioning Process Model

- De Jure stores norms, sanction, and norm-sanction links
- De Facto stores information about the applied sanctions and other relevant information used to assess the efficacy of the applied sanctions

(Nardin et al., 2016b)

Sanctioning Evaluation Model

Sanctioning Evaluation Model

Gavel

- ► Gavel is an adaptive sanctioning enforcement framework based on the conceptual sanctioning process model.
- The sanctioning process is realised by
 - agents endowed with special capabilities; and
 - supporting data repositories.

Gavel Architecture

Source code available at https://github.com/gavelproject/gavel

SmartGrid Experiments

Research Questions

What is the effect of a mono-type sanctioning policy on the level of norm compliance and the use of non-renewable energy in comparison to a multi-type sanctioning policy?

Hypotheses

- H1 A multi-type sanctioning policy **increases the level of norm compliance** in comparison to a mono-type policy
- H2 A multi-type sanctioning policy decreases the use of non-renewable energy in comparison to a mono-type policy

SmartGrid Experiments

- Scenario composed of
 - 100 Prosumers
 - 1 Provider
 - 1 Broker
 - 1 Regulatory Agency

Norms

N1 Sellers are obliged to supply the committed amount of energy to the buyer

Sanctions

- \$1 Denounce the violation to the Regulatory Agency
- \$2 Spread the negatively updated reputation score to other Prosumers
- S3 Ostracize the Prosumer

Policy	Description	
Base	No Sanction	
Formal	Prosumers can use only Formal sanctions (i.e., Denounce)	
Informal	Prosumers can use only Informal sanctions	
	(i.e., Reputation spreading)	
Hybrid	Prosumers can choose to use between Formal and Informal	
(Formal + Informal)	sanctions (i.e., choose between Denounce or Reputation spreading)	

SmartGrid Experiments

Metric	Base	Formal	Informal	Hybrid
Level Compliance	61.79%	71.94%	66.26%	68.40
Formal Sanction	0	6.72	0	1.16
Informal Sanction	0	0	16.09	13.67
Prosumer Sell	2875.60 kWh	3357.06 kWh	3125.63 kWh	3228.12 kWh

- It is worth sanctioning
- ► Formal policy is more efficacious than Informal and Hybrid policies in maintaining the level of norm compliance
- Formal policy requires 6 times more sanctions than the Hybrid policy (more costly)

- Industry 4.0 requires high reconfigurability and flexibility to adapt cyber-physical production systems (CPPS) to changing customer requirements and customized products
- MAS approaches proposed because they support
 - decentralized decision-making
 - flexibility through a modular CPPS control architecture
- MAS approaches success relies partially upon the agents' accurate and goal-oriented decision-making
- ► However, in non-deterministic systems such as process plants, agents are at risk of making inaccurate decisions or not fulfilling their offer due to the non-determinism

- Agent-based controlled process plant
- Hybrid combination of logistic and process systems
 - Logistic system consists of conveyor belts, switches, and barcode scanners. Transport bottles to filling stations.
 - Process system represented by filling stations that fill bottles with recipe-specific liquids

Figure : Production plant consisting of process and logistic parts

Figure : Multiagent architecture of the process plant based on ISA 88

- ► The filling stations can fill the bottles with different liquids
- Filling process uses a proportioning valve that opens for a specific time window to achieve a specific fill level in the bottle
- Residues of the liquid may adhere to the valve, clogging it over time

Figure: Process plant with filling stations and clogging of proportioning valve

- ► The norm defines that "Unit agents are obliged to operate under the cost committed to the plant agent"
- ➤ Cost means that if a unit agent commits to providing 400ml of a specific liquid within two seconds, it must comply with.

	Sanctioning Decision	Sanction
Unit-Agent	Update the valve agent's image for that task (liquid and time) based on the polarity and magnitude deviation factors (if the image below a threshold)	Signal to the valve agent to adjust its flow rate estimation
	2) Update the valve's image for that task (same liquid) based on the polarity and magnitude deviation factors. If image below a threshold and it has not complied with the norm for 2-3 consecutive times	Activate the valve's self- cleaning routine (loss of potential orders during cleaning)
Plant Agent	3) Update the unit agent's image based on the polarity and magnitude deviation factors. If the image below a threshold	Plant agent reduces the likelihood to select unit agent to fulfill the bottle orders
	4) Update the unit agent's image based on the polarity and magnitude deviation factors. If the unit agent's image is below a threshold and it has not complied with the norm for five consecutive times	Plant agent removes unit agent as a possible option for fulfilling bottle orders and generate an alarm: Unit agent requires manual work (long downtime)

Table: Sanctioning decisions and sanctions

- Bottle agent enacts the **Detector** capability
- Plant and Unit agents enact the Evaluator and Executor capabilities
- ► The Controller and Legislator as well as the repositories extends the current Production plant MAS architecture

Figure: Sanctioning process integrated into the production plant MAS

Challenges

Normative Language

 Define a declarative normative language that accounts for sociotechnical system requirements, such as trustworthiness

Enforcement Model

- Identify main factors impacting the agents' decision-making (probably domain application dependent)
- Identify psychological models to support the agents' decision-making regarding why, when, how to sanction

Applications

 Expand the application of the approach to demonstrate its usefulness in different real applications

References

- Balke, T. (2009). A taxonomy for ensuring institutional compliance in utility computing. In Boella, G. et al. (Ed.). Normative Multi-Agent Systems. Dagstuhl: Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik.
- Balke, T. & Villatoro, D. (2012) Operationalization of the sanctioning process in utilitarian artificial societies. In Cranefield, S. et al. (Ed.). Coordination, Organizations, Institutions, and Norms in Agent System VII (pp. 167–185). Cham: Springer.
- Boella, G., Torre, L. van der, & Verhagen, H. (2008). Introduction to the special issue on normative multiagent systems. Journal of Autonomous Agents and Multi-Agent Systems, 17(1), 1–10.
- de Lima, I. C. A., Nardin, L. G., & Sichman, J. S. (2019). Gavel: A sanctioning enforcement framework. In D. Weyns, V. Mascardi, & A. Ricci (Eds.), Engineering Multi-Agent Systems (pp. 225–241). Cham: Springer.
- Grossi, D., Aldewereld, H., & Dignum, F. (2007) Ubi Lex, Ibi Poena: Designing norm enforcement in e-institutions. In Noriega, P. et al. (Ed.). Coordination, Organizations, Institutions, and Norms in Agent Systems II (pp. 101–114). Cham: Springer.
- Hollander, C. D. & Wu, A. S. (2011). The current state of normative agent-based systems. Journal of Artificial Societies and Social Simulation, 14(2).
- Land, K., Nardin, L. G., & Vogel-Heuser, B. (2023). Increasing robustness of agents' decision-making in production automation using sanctioning. In Proceedings of the 2023 IEEE 21st International Conference on Industrial Informatics (INDIN) (pp. 1–6). Pistacaway, NJ: IEEE.
- Nardin, L. G., Andrighetto, G., Conte, R., Székely, Á., Anzola, D., Elsenbroich, C., Lotzmann, U., Neumann, M., Punzo, V., & Troitzsch, K. G. (2016a). Simulating protection rackets: A case study of the Sicilian Mafia. *Journal of Autonomous Agents and Multi-Agent Systems*, 30(6), 1117–1147.
- Nardin, L. G., Balke, T., Ajmeri, N., Kalia, A. A., Sichman, J. S., & Singh, M. P. (2016b). Classifying sanctions and designing a conceptual sanctioning process model for socio-technical systems. The Knowledge Engineering Review, 31(2), 142–166.
- Singh, M. P. (2013) Norms as a basis for governing sociotechnical systems. ACM Transactions on Intelligent Systems and Technology, ACM Press. 5(1), 21:1–21:23.

Thank you!