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Abstract. SOARI is a service oriented architecture that provides sup-
port to the semantic interoperability among agents that implement het-
erogeneous reputation models. Using this architecture, several experi-
ments and analyses were previously conducted in order to show the ef-
fects of a more expressive communication on the reputation evaluation
accuracy. However, such analyses were conducted using a univariate sta-
tistical approach which disregards possible correlations among reputation
models' attributes. Therefore, in order to consider the in�uence of such
possible correlations, this paper analyzes the e�ects of a more expressive
communication among agents with di�erent reputation models using a
multivariate statistical approach.

1 Introduction

The number of available online services, in domains such as e-Commerce, e-
Government and e-Science has increased in the last years due to the expansion
of Internet use [15]. Agent-based computing has been advocated as the natu-
ral computational model to automate the interaction with these services, since
agents may act autonomously at some extent and they may engage in social
activities such as cooperation, coordination, and negotiation [21] on behalf of a
user. The engagement in any of these social activities implies that the agents will
exchange information, thus becoming exposed to non-knowledgeable or malevo-
lent agents.

In order to reduce the risks associated with such interactions, some solutions
were proposed, whose were based on di�erent trust and reputation models, like
Histos and Sporas [22], MMH (Mui, Mohtashemi and Halberstadt) [9], ReGreT



[17], FIRE [6], Repage [16] and L.I.A.R.3 [10]. Therefore, since there is no con-
sensus about a single unifying reputation de�nition, the semantics associated
with reputation di�ers from one model to another. This heterogeneity raises a
semantic interoperability issue, which is addressed by SOARI (Service Oriented
Architecture for Reputation Interaction) [11] architecture.

In a previous work [12], we developed some experiments using SOARI, whose
analyses showed that enabling a more expressive communication improves the
agents' reputation evaluation accuracy. Those analyses were conducted applying
a nonparametric univariate statistical hypothesis test method, thus a hypothe-
sis was elaborated and tested for each reputation model attribute in isolation.
Moreover, the improvement conclusion was based on the fact that the attributes
that presented some improvement were the ones in�uenced by communication.

Therefore, this paper aims to conduct a multivariate statistical analysis, using
the same experimental data used in the univariate analysis case, in order to
verify the hypothesis that a more expressive communication about reputation is
su�cient to improve the reputation evaluation accuracy for the experiments as
a whole.

The rest of the document is organized as follows. Section 2 brie�y presents
SOARI architecture as well as the simulation platforms used to run the experi-
ments. In Section 3, the multivariate method used to analyze the experimental
results is described. Then, in Section 4, we present and analyze the obtained
results. Finally, conclusions and future work are presented in Section 5.

2 Background Work

In this section, we present the tools used to run the experiments shown in this
paper. First, SOARI's main characteristics and functionalities are brie�y de-
scribed. Then, we present the characteristics and di�erences between the ART
(Agent Reputation and Trust) [3] and the FOReART [19] testbeds.

2.1 SOARI

SOARI (Fig. 1) is a service oriented architecture that provides support to the se-
mantic interoperability among agents that implement heterogeneous reputation
models. Its main underlying idea is that the mapping among di�erent reputation
models, represented as ontologies, may be executed externally to the agents and
be available online as a service for agents' use.

This architecture uses the hybrid semantic interoperability approach pro-
posed by [20], which allow the interoperation of agents with di�erent reputation
models based on a common vocabulary. In this approach, each agent has its
own internal ontology to represent its own reputation model and uses a common
reputation ontology, namely FORe [2], to interact with other agents. Therefore,
interoperability is possible if each agent has the mapping of its own internal rep-
utation model ontology to the common reputation ontology. By adopting this

3 Liar Identi�cation for Agent Reputation.



Fig. 1. Service Oriented Architecture for Reputation Interoperability.

approach, agents are prevented from requiring to know other agents' internal
reputation models which avoids the use of such information in a hazardous way.
Other advantages claimed by the SOARI architecture are: (i) agent simpli�ca-
tion, (ii) agent workload reduction, and (iii) ontology mapping reuse.

SOARI is composed of two distinct and specialized modules (in grey in the
Fig. 1), the Ontology Mapping Service (OMS) and Translator Module (TM),
whose are responsible for the mapping and translation ontology functions [8]:

� TheOMSmodule is a service outside the agent that implements the mapping
and translation ontology functions and presents two main functionalities: (i)
it maps concepts from the target's reputation model ontology to the concepts
of the common ontology; and (ii) it answers concept translation requests from
the TM.

� The TM resides inside the agent and it translates reputation messages. It
has four main activities: (i) it translates the reputation messages from the
common ontology to the target agent's reputation model ontology whenever
the message comes from another agent; (ii) it translates the reputation mes-
sages from the agent's reputation model ontology to the common ontology
whenever sending a message to another agent; (iii) it triggers some internal
reputation function based on the interpretation of messages written using the
reputation model ontology; and (iv) it creates a message using the internal
reputation model ontology.

A more detailed description of SOARI can be found in [11].

2.2 Simulation Testbeds

The ART [3] and FOReART [19] testbeds are currently the only simulation
platforms freely available that provide a common environment to compare dif-
ferent agent reputation models and implementations. They simulate an iterative



art appraisal game, in which agents have di�erent knowledge (expertise) about
di�erent painting eras. During the game, agents are asked to evaluate paintings
by a pool of clients. In order to overcome their intrinsic knowledge limitation,
agents may buy reputation information about third-parties, as well as opinions
about paintings, from other agents to produce more accurate appraisals.

Despite both testbeds implement the same art appraisal game, they di�er in
the way they enable interoperability among agents. In the ART testbed, inter-
operability is obtained by mapping the agent's reputation model evaluations into
a single value in the domain [0:1]. Although not explicitly de�ned, it is assumed
that value 0 refers to the lowest reputation value and 1 to the highest reputation
value. This value representation model may incur in loss of expressiveness, since
it is usually required to map complex internal reputation models into a simplistic
one.

On the other hand, the FOReART testbed, which is an extension of the
ART testbed, enables agents to communicate through symbolic messages. In this
work, the SOARI architecture was used to implement the FOReART testbed
agents, thus enabling a more expressive communication about reputation among
them. A more detailed description about the ART and FOReART testbeds can
be found in [4,1].

3 Nonparametric Multivariate Analysis Method

Multivariate analysis is designed to elicit information from a set of stochas-
tic vectors that include simultaneous measurements on many di�erent variables
[7]. Multivariate hypothesis tests are methods of group comparisons using such
multivariate data, and they may be divided in two groups: parametric and non-

parametric methods.

The parametric methods assume that the data have come from an underlying
probability distribution and make inferences about the parameters of the distri-
bution. For instance, the Hotelling T 2 test [5] is a multivariate generalization of
Student's T for tests about a location parameter.

The nonparametric methods do not rely on assumptions about the data's
probability distribution. One nonparametric alternative to the Hotelling T 2 test
is the multivariate permutation test [13], where the only assumption is the ex-
changeability among the multivariate data vectors.

In this work, we are interested in nonparametric multivariate two-sample
hypothesis tests, since (i) the reputation models are inherently multivariate, (ii)
the experimental data for analysis are not normally distributed, and (iii) we
want to perform group comparison between two experimental samples at a time.

Consider that X1, . . . ,Xn1 are n1 independent and identically distributed
(iid) random vectors with a continuous distribution function F (x) de�ned on Rp

for some p > 1, and Y1, . . . ,Yn2
are n2 iid random vectors with a continuous

distribution functionG(x), also de�ned on Rp. Thus, X and Y denote the vectors
of estimated reputation model attributes' values that we will compare. In that



respect, it is assumed that

G(x) = F (x−∆), x ∈ Rp, F ∈ F (1)

where ∆ is a p-vector of real (unknown) elements, and F is the class of all
continuous (not necessarily symmetric) distribution functions on Rp. Therefore,
the hypothesis testing may be stated as

H0 : ∆ = 0 vs H1 : ∆ > 0,∆ 6= 0. (2)

As already informed, when the assumption of multivariate normality is not
reasonable, hypothesis testing based on permutation o�ers one possible solution
[18]. Therefore, writing ∆ = (δ1, . . . , δp)T , we may write the null hypothesis of
equality in multivariate distributions as

H0 =

p⋂
j=1

H0j (3)

where each univariate null hypothesis H0j tests the equality between the
univariate distributions for the jth reputation model attribute and H0 represents
the global null hypothesis test. Thus, the global alternative hypothesis test may
be represented as

H1 =

p⋃
j=1

H1j (4)

where H0j : δj = 0 and H1j : δj > 0, j = 1, . . . , p.
For the jth marginal distribution function for F (Fj) and G (Gj), we have

by Eq. 1 that Gj(x) = Fj(x − δj), x ∈ R, therefore, we may construct a test
statistic for H0j vs H1j based on appropriate two-sample linear rank statis-
tics, for j = 1, . . . , p. Under H0, we may consider that the two samples are
from a common population, so that the joint distribution of all the n-vectors
(X1, . . . ,Xn1

,Y1, . . . ,Yn2
) remains invariant under any permutation of them.

The observation n-vectors (X1, . . . ,Xn1
,Y1, . . . ,Yn2

) then gives rise to the
rank vector Rn, where Rij is the rank among the n observations X1j , . . . , Xn1j ,
Y1, . . . , Yn2j for i = 1, . . . , n and j = 1, . . . , p. Hence, assuming the two samples
are from the same common population, the columns of the rank-collection matrix
Rn are exchangeable vectors, where n = n1 + n2.

Rn =


R11 . . . R1n

. .

. .
Rp1 . . . Rpn

 (5)

We denote by Pn the permutational (conditional) probability generated by
the n! (equally likely) possible permutations of the columns of Rn. Then, a test
statistic Tnj may be de�ned as

Tnj =
1

n2

n∑
i=n1+1

anj(Rij)−
1

n1

n1∑
i=1

anj(Rij), 1 6 j 6 p (6)



where anj(r), r = 1, . . . , n denotes the scores for the jth Rn matrix row. The
null hypothesis is rejected for Tnj values larger than the critical value. Therefore,
in order to obtain the critical value for Tnj , we may calculate Ln1n2 (Eq. 7) for
all possible n! permutations of Rn.

Ln1n2
= [n0T

T
nV−1

n Tn − inf{(Tn − b)TV−1
n (Tn − b) : b ≥ 0}] (7)

where n0 = n1n2/n, Tn represents the vector of all the Tnj values, and the
Vn is the covariance matrix calculated as

Vn =
1

n

[
n∑

i=1

{anj(Rij)− ānj}{anl(Ril)− ānl}

]
j,l=1,...,p

(8)

where ānj = {anj(1) + . . .+ anj(n)}/n, 1 6 j 6 p.

If Tn is exactly N(θ,Vn) and Vn is treated as non-stochastic, we may con-
sider it numerically equal to the likelihood ratio statistic. Hence, Ln1n2

may be
easily computed using a quadratic program.

Since for large values of n the number of permutations may become computa-
tion prohibitively, in order to obtain the permutational (conditional) probability
Pn, we may select x, arbitrarily chosen, randomly possible permutations of the
columns of Rn and for each one compute Ln1n2

. One may notice that for larger
x the permutational (conditional) probability becomes more accurate. In order
to obtain the critical value for statistical test, all the values of Ln1n2 should be
sorted

Ln1n2(1) 6 Ln1n2(2) 6 . . . 6 Ln1n2(x) (9)

and the value Ln1n2(x− (x∗α)) is selected as the critical value for statistical
testing, where α is the level of signi�cance expected for the test. Therefore,
if Ln1n2

computed for the Rn rank-collection not permuted matrix is greater
than the critical value, then the null hypothesis (H0) is rejected accepting the
alternative hypothesis (H1), otherwise we cannot reject H0.

4 Experiments

In this section, we brie�y describe the simulations performed using ART and
FOReART testbeds, as well as the multivariate analysis conducted using the
methodology described in Section 3.

More speci�cally, in this section we intend to present a multivariate analy-
sis obtained from the simulations in order to verify the hypothesis that a more
expressive communication about reputation is su�cient to improve the repu-
tation evaluation accuracy. As mentioned earlier, we have already performed a
univariate analysis and concluded that there is an improvement of using a more
expressive communication, however, in this work we extend this analysis using a
method that consider the correlations among all the reputation model attributes.



4.1 Simulations

The experiments were extensively described in a previous work [12], and hence
readers interested in the details are encouraged to read it. In this paper, we will
provide a brief overview, su�cient to provide the necessary information for the
statistical analysis.

The main objective of the experiments was to compare the reputation as-
signed by Honest agents to a Dishonest agent obtained from di�erent simulation
scenarios of painting appraisal. Honest agents answer to the requests only when
they have expertise about the corresponding painting era and using information
coherent to their internal state. On the other hand, Dishonest agents answer to
all reputation and opinion requests, even when they do not have expertise about
that painting era and they never answer the requests using information coherent
to their internal state.

In order to test the improvement when communication expressiveness is
higher, we proposed several simulation scenarios, which were classi�ed based
on three dimensions: (1) reputation models used by the Honest agents (Repage,
L.I.A.R., MMH or a combination of them), (2) reputation model of the Dishonest
agent (in the case of mixed reputation models) and (3) reputation communica-
tion method (numeric, when using ART, or symbolic, when using FOReART).
The two �rst dimensions are shown in Table 14.

Table 1. Summary of ART and FOReART simulation scenarios.

Honest Agent Dishonest Agent Number of

Reputation Model Reputation Model Attributes

L.I.A.R. L.I.A.R. 3
Repage Repage 2
MMH MMH 3
L.I.A.R. and Repage L.I.A.R. 5
L.I.A.R. and Repage Repage 5
Repage and MMH Repage 5
Repage and MMH MMH 5
MMH and L.I.A.R. MMH 6
MMH and L.I.A.R. L.I.A.R. 6
L.I.A.R., Repage and MMH L.I.A.R. 8
L.I.A.R., Repage and MMH Repage 8
L.I.A.R., Repage and MMH MMH 8

We executed 10 runs (p = 10) of each simulation scenario with 100 cycles
each. Each scenario was composed of 21 agents (n = 21), where 20 agents were

4 For conciseness, we didn't represent explicitely the third dimension in Table 1.



Honest5 and 1 agent was Dishonest (i = [1, 20] and j = 21). The mean reputa-
tion value of the Dishonest agent by each Honest agent (rj) was taken as the
one obtained in the last simulation cycle (l = 100 and m = 100), because we
considered it as the most accurate reputation evaluation.

Formally, consider a set of n agents, where i = {1, 2, . . . , n − 1} are Honest

agents and j = n is a Dishonest agent. Moreover, consider that rskij is the reputa-
tion value assigned by the agent i to the agent j in cycle k on simulation run s.
Typically, the reputation value assigned by agent i to agent j on simulation run
s corresponds to the mean reputation value of a set of cycles, which is calculated

as rsij =

m∑
k=l

rskij

m− l + 1
, where l and m represents, respectively, the lower and upper

cycle limits. The mean reputation value assigned by the Honest agents to the

Dishonest agent on each simulation run s is rsj =

n−1∑
i=1

rsij

n−1 . Finally, given a set of
simulation run s = 1, . . . , p that compose a simulation scenario, the mean value

of the Dishonest agent is rj =

p∑
s=1

rsj

p .

Such computation was performed for each reputation model attribute that
composes the simulation scenario. Thus, at the end of each simulation scenario
run, a vector of size z was generated, where z correspond to the number of
reputation models attributes considered on the simulation scenario (see Table 1).
Table 2 presents the attributes used by each reputation model in the simulations.

Table 2. Reputation models attributes.

Reputation Model Attribute Name

Direct Interaction-based Reputation (DIbRp)
L.I.A.R. Indirect Interaction-based Reputation (IIbRp)

Reputation Recommendation-based Reputation (RpRcbRp)
Repage Image

Reputation

Encounter Derived Reputation (EncRep)
MMH Observed Reputation (ObsRep)

Propagated Reputation (PropRep)

5 In mixed experiments, we adopted the following policy: when two reputation models
were considered, we used 10 Honest agents of each model; when three reputation
models were considered, we used respectively 7, 7 and 6 Honest agents of each model.



4.2 Results Analysis

Since we are interested in identifying improvements when communications ex-
pressiveness increases, we applied the methodology presented in Section 3 using
the simulation scenarios di�ering only in the testbed that was used. In other
words, we have compared each of the lines presented in Table 1 using the ART
(less expressive) and the FOReART (more expressive) testbeds.

Moreover, we performed the analysis considering 10, 000 permuted rank-
collection matrices Rn to compute the permutational (conditional) probability
and signi�cance level (α) of 5% to compute the critical Ln1n2 . This analysis was
performed using the statistical software R [14], and the results are presented in
Table 3.

Table 3. Experimental analysis results.

Honest Agent Dishonest Agent Computed Critical Test

Reputation Model Reputation Model Ln1n2 Ln1n2 Result

L.I.A.R. L.I.A.R. 5.391 7.235 ACCEPTED
L.I.A.R. and Repage L.I.A.R. 10.999 9.629 REJECTED
L.I.A.R. and Repage Repage 11.759 9.600 REJECTED
Repage Repage 11.077 5.676 REJECTED
MMH MMH 15.666 6.789 REJECTED
MMH and L.I.A.R. L.I.A.R. 15.047 10.839 REJECTED
MMH and L.I.A.R. MMH 14.856 10.827 REJECTED
MMH and Repage Repage 15.613 9.443 REJECTED
MMH and Repage MMH 15.504 9.702 REJECTED
L.I.A.R., Repage and MMH L.I.A.R. 14.014 12.758 REJECTED
L.I.A.R., Repage and MMH Repage 13.184 12.698 REJECTED
L.I.A.R., Repage and MMH MMH 14.846 12.626 REJECTED

We want to verify that the reputation value of the Dishonest agent attributes
using ART is greater than the one obtained when using FOReART; in our case,
a greater reputation value means that the Dishonest agent is less accurately
detected in ART. Hence, we would like H0 to be rejected.

When observing Table 3, we may notice that the only scenario that did not
reject H0 was the homogeneous L.I.A.R. simulation scenario. Therefore, despite
that most of the experiments bene�ts of a more expressive communication, we
could not con�rm the general hypothesis that it is su�cient to improve the
reputation evaluation accuracy.

However, analyzing the attribute values for the homogeneous L.I.A.R. simula-
tion scenario, using both ART and FOReART testbeds, we had detected in [12]
that the attribute in�uenced by communication (Reputation Recommendation-

based Reputation) shows some improvements in the evaluation accuracy when



analyzed in isolation. However, since multivariate analysis considers all the at-
tributes together, the improvement of the in�uenced attribute was not su�-
cient enough to compensate the other attributes values, which did not show any
improvement, and therefore the integrated analysis failed to reject H0 in this
speci�c case.

5 Conclusions

In this paper, we applied a nonparametric multivariate statistical method in
order to analyze the experimental data considering the correlation between rep-
utation models attributes. The analyses were performed to verify if a more ex-
pressive communication is su�cient to improve reputation evaluation accuracy.
The results have shown that most of the experiments bene�ts of more expres-
siveness, except in the homogeneous simulation scenario where all the agents use
the L.I.A.R. reputation model.

Although this multivariate analyses could not show that there is an im-
provement for all the simulation scenarios, it does not invalidate the results we
obtained in our previous work, since the latter identi�ed improvements in the
reputation evaluation accuracy for the L.I.A.R. attributes speci�cally related to
communication.

In further work, we intend to perform other multivariate analysis in order to
identify if there is an improvement in the reputation evaluation accuracy when
comparing homogeneous and heterogeneous simulation scenarios. We also intend
to perform some qualitative analysis in order to better explain the quantitative
analysis results, thus enabling a better understanding of the reputation models
interdependence. Finally, we intend to study the costs incurred when using a
more expressive communication, such as processing and bandwidth resources.
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